12,136 research outputs found

    Binding energies of hydrogen-like impurities in a semiconductor in intense terahertz laser fields

    Full text link
    A detailed theoretical study is presented for the influence of linearly polarised intense terahertz (THz) laser radiation on energy states of hydrogen-like impurities in semiconductors. The dependence of the binding energy for 1s and 2p states on intensity and frequency of the THz radiation has been examined.Comment: 14 pages, 4 figure

    Anomalous Hall effect in L10-MnAl films with controllable orbital two-channel Kondo effect

    Full text link
    The anomalous Hall effect (AHE) in strongly disordered magnetic systems has been buried in persistent confusion despite its long history. We report the AHE in perpendicularly magnetized L10-MnAl epitaxial films with variable orbital two-channel Kondo (2CK) effect arising from the strong coupling of conduction electrons and the structural disorders of two-level systems. The AHE is observed to excellently scale with pAH/f=a0pxx0+bpxx2 at high temperatures where phonon scattering prevails. In contrast, significant deviation occurs at low temperatures where the orbital 2CK effect becomes important, suggesting a negative AHE contribution. The deviation of the scaling agrees with the orbital 2CK effect in the breakdown temperatures and deviation magnitudes

    Quantum state engineering with flux-biased Josephson phase qubits by Stark-chirped rapid adiabatic passages

    Full text link
    In this paper, the scheme of quantum computing based on Stark chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei et al., Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement the quantum-state manipulations in the flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark-shifts. Then, assisted by various transition pulses universal quantum logic gates as well as arbitrary quantum-state preparations could be implemented. Compared with the usual PI-pulses operations widely used in the experiments, the adiabatic population passage proposed here is insensitive the details of the applied pulses and thus the desirable population transfers could be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.Comment: 9 pages, 4 figure

    Simulation and Detection of Photonic Chern Insulators in One-Dimensional Circuit Quantum Electrodynamics Lattice

    Full text link
    We introduce a simple method to realize and detect photonic topological Chern insulators with one-dimensional circiut quantum electrodynamics arrays. By periodically modulating the couplings of the array, we show that this one-dimensional model can be mapped into a two-dimensional Chern insulator model. In addition to allowing the study of photonic Chern insulators, this approach also provides a natural platform to realise experimentally Laughlin's pumping argument. Based on scattering theory of topological insulators and input-output formalism, we show that the photonic edge state can be probed directly and the topological invariant can be detected from the winding number of the reflection coefficient phase.Comment: 5 pages, 3 figure

    Velocity estimation error reduction in stenosis areas using a correlation correction method

    Get PDF
    The advent of ultrafast ultrasound imaging proved beneficial for capturing transient flow patterns which was never readily achievable before. Velocity estimation methods based on 2D block-matching outperform Doppler based methods by offering higher frame rate with the cost of increased uncertainty in presence of out-of-plane motion as a result of turbulent flow. Local median filtering can partially address the estimation error reduction in stenosis areas at the risk of higher inaccuracy, since neighboring values may be also outliers. In this study, a correlation correction method is proposed, where the out-of-plane motion is eliminated by means of multiplying correlation maps from a same area but in two adjacent pairs of RF images. Experimental investigations were performed on a wall-less flow phantom, and proposed method achieved an error reduction of 66% in turbulent flow regions

    Inferring individual-level variations in the functional parcellation of the cerebral cortex

    Get PDF
    Objective: Functional parcellation of the cerebral cortex is variable across different subjects or between cognitive states. Ignoring individual - or state - dependent variations in the functional parcellation may lead to inaccurate representations of individual functional connectivity, limiting the precision of interpretations of differences in individual connectivity profiles. However, it is difficult to infer the individual-level variations due to the relatively low robustness of methods for parcellation of individual subjects. Methods: We propose a method called “joint K-means” to robustly parcellate the cerebral cortex using fMRI data for contrasts between two states or subjects that intended to characterize variance in individual functional parcellations. The key idea of the proposed method is to jointly infer parcellations in contrasted datasets by iterative descent, while constraining the similarity of the two pathways in searches for local minima to reduce spurious variations. Results: Parcellations of resting-state fMRI datasets from the Human Connectome Project show that the similarity of parcellations for an individual subject studied on two sessions is greater than that between different subjects. Differences in parcellations between subjects are non-uniformly distributed across the cerebral cortex, with clusters of higher variance in the prefrontal, lateral temporal and occipito-parietal cortices. This pattern is reproducible across sessions, between groups and using different numbers of parcels. Conclusion: The individual-level variations inferred by the proposed method are plausible and consistent with the previously reported functional connectivity variability. Significance: The proposed method is a promising tool for investigating relationships between the cerebral functional organization and behavioral differences
    • …
    corecore